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Abstract

A computation model is developed, and flow dynamics and heat and mass transfer in a turbulent two-phase gas–

drop ducted flow are numerically studied. To calculate the turbulent characteristics of the gas phase, the two-equation

Nagano–Tagawa E–e model was used, modified so that to account for presence of liquid drops in the flow. The impact
of various parameters on heat transfer intensification is analyzed. An increase in the gas concentration in the vapor–gas

mixture enhances the rate of heat transfer over the initial length of the duct and reduces the length of the evaporation

zone. The computed flow dynamics and heat- and mass transfer data are compared with previously reported experi-

mental and numerical results, and a fairly good agreement between the compared data is obtained.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Multiphase flows and, in particular, two-phase flows

are often met in nature and widely used in current

technology. Motion of liquid drops in clouds and mists,

and interaction between atmosphere and ocean provide

examples of natural two-phase flows. Among most im-

portant technical applications of two-phase flows are

atomization of liquid propellant particles and protection

of working surfaces in engines, and also their use in

power-equipment components, in chemical apparatus,

and in air-conditioning systems. The involvement of a

liquid phase and its evaporation in the boundary-layer

flow necessitates taking into account the heat and mass

transfer between phases. A detailed study of the mech-

anism underlying the transfer between phases is of es-

pecial interest for the supercritical region of the flows in

steam-generating devices, when the near-wall film dis-

integrates and the dispersion-annular mode of the flow

gives way to the purely dispersion flow mode [1].

Of primary importance here, especially for technical

applications of the flows of interest, is the fact that ra-

ther pronounced intensification effects can be achieved

with relatively low mass concentrations of the liquid. As

a rule, the mass concentration of the liquid phase is no

higher than several percents, whereas the heat transfer

intensity may be increased by a factor of 3–8. Indicative

of such a pronounced intensification are experimental

and numerical heat transfer data obtained for two-phase

flows around cylinders [1,2], wedge-shaped bodies [3],

and plates [4,5], and for two-phase impact jets [6].

Similar effects were also observed when studying ducted

flows of vapor–drop [7,8] and gas–drop [9–13] mixtures,

both laminar and turbulent.

The heat transfer intensification mechanism operat-

ing in the case of the heat carriers of interest consists in

making use of the latent evaporation heat being released

as the generated vapor undergoes condensation. How-

ever, the liquid–drop evaporation process is sensitive to

many thermal and gas dynamic parameters [8], which

makes theoretical treatment of the combined heat and

mass transfer in vapor–gas–drop flows around plates or

in ducted vapor–gas–drop flows a difficult problem.

That is why a great number of simplifying assumptions

were adopted in available numerical studies, which does

not allow a rigorous heat- and mass transfer theory to be

*Corresponding author. Tel.: +7-3832-341736/328969; fax:

+7-3832-343480.

E-mail address: terekhov@itp.nsc.ru (V.I. Terekhov).

0017-9310/03/$ - see front matter � 2003 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310 (02 )00472-6

International Journal of Heat and Mass Transfer 46 (2003) 1503–1517

www.elsevier.com/locate/ijhmt

mail to: terekhov@itp.nsc.ru


Nomenclature

A drop area cross-section (m2), pd2=4
b1D diffusional injection parameter for the vapor

released by an evaporation, ðK�
V � KVÞ=

ð1� K�
VÞ

CD coefficient of resistance

Cf=2 skin friction coefficient,
ðlþlTÞðoU=orÞW

qU2
0;m

Cp, CpA, CpL, CpV heat capacities of mixture, air, liq-

uid, and vapor (J/kg K)

D vapor diffusivity in air (m2/s)

d drop diameter (m)

dP particle diameter (m)

E turbulent kinetic energy (m2/s2)

F drop area (m2), pd2

g gravitational acceleration (m/s2)

G mass flow rate (kg/s)

GE mass flow rate from evaporating drop (kg/s)

J mass flux of vapor from the surface of

evaporating drop (kg/(ms))

kL drop deposition velocity (m/s)

KA, KV mass concentration of air and vapor in bi-

nary vapor–air mixture

K�
V mass concentration of vapor at the drop

surface an evaporating corresponding to

saturation parameters at the drop tempera-

ture TL
l mixing length (m)

L heat of vaporization (J/kg)

m drop mass (kg), qLpd3=6
MA, MV, ML air, vapor, and liquidmass concentration

in the triple air–vapor–drops mixture

n numerical density of drops (m�3), qML1

qLpd3
1
=6

Nu Nusselt number, a2R=k
NuL drop Nusselt number, ad=k
NuP Nusselt number non-evaporating particle,

aPdP=k
P pressure (N/m2)

Pr Prandtl number, Cpl=k
qE heat spent on evaporation of liquid drops in

the flow (W/m2)

qF heat spent on heating the vapor–gas flow

(W/m2)

qW heat flux density supplied to the wall (W/m2 )

qWF heat flux density supplied to the gas–vapor–

drop flow (W/m2 )

qWL heat flux density due to the conductive heat

transfer upon immediate drop/wall contacts

(W/m2 )

R absolute gas constant (J/(mol K))

R tube radius (m)

Rþ dimensionless tube radius, RU�=m

ReL drop Reynolds number, qd �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � ULÞ2 þ ðV � VLÞ2

q
=l

ReP Reynolds number of non-evaporating par-

ticle, qdP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � UPÞ2 þ ðV � VPÞ2

q
=l

ReT turbulence Reynolds number, E2=�m
U , V velocity component in axial and radial di-

rections (m/s)

Um vapor–air mixture mean velocity (m/s)

DU relative velocity of the two phases (m/s),

U � UL

U� wall friction velocity (m/s)

Sc Schmidt number, m=D
Sh Sherwood number, bd=D
StD diffusional Stanton number, �qVD

oK�
V

or =
qUðK�

V � KVÞ
T , TL mixture and drop temperatures (K)

W correction factor for the Stokes law,

ð1þ Re2=3L =6Þ
hu2i, hv2i root-mean-square velocity fluctuations in

axial and radial directions (m2/s2)

We Weber number, qDU 2d=r
y coordinate normal to the wall (m)

yþ dimensionless distance from the duct wall,

written in dynamic variables, ðR � rÞU�=m

Greek symbols

a heat transfer coefficient (W/(m2 K))

b mass transfer coefficient (m/s)

d boundary layer thickness (m)

e dissipation rate of turbulent kinetic energy

(m2/s3 )

k thermal conductivity (W/(m K))

l dynamic viscosity ((N s)/m2 )

lT eddy viscosity ((N s)/m2 )

m kinematic viscosity (m2/s)

H relative temperature profile

Xe time microscale (s), ð15m=�Þ1=2
XE Eulerian time macroscale (s)

XL Lagrangian time macroscale (s)

q, qL, qV mixture, liquid, vapor densities (kg/m3 )

r surface tension (N/m)

s particle relaxation time (s), qLd2=ð18lW Þ

Subscripts

0 parameter at the duct axis

1 parameter under inlet conditions

A air

C critical value of a parameter

D diffusional parameter

i current calculation cross-section along the

axial direction
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developed even for a physically more simple case of a

laminar flow. This point was discussed in more detail in

[7–13].

With a non-condensable gas present in the mixture,

there arises an additional mechanism responsible for the

vapor diffusion from the surface of liquid drops into the

vapor–gas mixture. The presence of a second component

in the gas phase, for instance, air mixed with water

vapor, substantially complicates the problem since in

this case there arises a need in joint solution of energy

and diffusion equations for the vapor–gas phase.

Many works (see, for instance, [1–13]) have been

devoted to the theoretical and experimental study of

heat transfer in two-phase laminar and turbulent flows

and the hydrodynamics of such flows. Among many

types of flows, most thoroughly studied are vapor–drop

flows, both laminar and turbulent [7,8]. Simultaneously,

of primary significance for practical applications is

gaining data for ducted turbulent gas–drop flows, al-

though reported studies in this research area are few in

number [9–13].

Ganic et al. [9,13] performed a series of experimental

and numerical heat transfer studies of ducted gas–drop

flows. A good agreement between the measured and

theoretically predicted wall temperatures shows that the

rate of heat transfer between the wall and the drops

depends predominantly on the steady-state wall tem-

perature. The local heat transfer coefficient decreases

with increasing wall temperature and increasing wall

heat-flux density, and increases with increasing flow

velocity and concentration of liquid drops.

Terekhov et al. [11] considered heat and mass transfer

in a turbulent, fully developed two-component vapor–

gas–drop flow. The turbulent gas phase structure was

modeled using the algebraic model of turbulence previ-

ously proposed by Deissler [14]. The liquid drops were

assumed to exert no substantial influence on the velocity

and turbulent-viscosity profiles of the gas flow. In this

study, a single-velocity model was used, in which veloci-

ties of both phases were assumed identical. This ap-

proach has allowed the authors to simplify the problem

since in this case it was not necessary to solve the equa-

tions of flow for the phase-carrier and the equations of

motion for the particles together with the energy and

diffusion equations for the vapor–gas mixture.

Many numerical heat transfer studies of gas–vapor–

drop flows [9,10] were based on a number of simplifying

assumptions that still require a detailed substantiation.

For instance, the integral approach [9] and the asymp-

totic theory of turbulent boundary layer [10], as applied

to the description of heat- and mass transfer processes in

two-phase flows, do not allow one to take an adequate

account of all specific features of the processes in full

measure.

Models based on using systems of differential

boundary layer equations for two-phase, two-compo-

nent mixture lack most of such drawbacks. As it was

shown in [11,12], such models accurately predict various

characteristics of heat- and mass transfer processes in

two-component gas–vapor–drop flows.

The problem statement in the present study was

much the same as in [11]; however, to close the gov-

erning equations, a two-equation E–� model of turbu-
lence [15] was used. Two-equation models of turbulence

modified so as to cover the case of flows with a dispersed

phase were successfully used to model non-isothermal

flows with solid particles [16–18]. At the same time, their

applications to the systems with liquid drops are very

rare [19].

In the present work, we take into account the influ-

ence of many factors on heat transfer, such as precipi-

tation of liquid drops and their evaporation in the duct

volume and at the duct surface. Results of testing the

model and comparing them with earlier experimental

and numerical data are reported.

2. Physical model

We consider a ducted turbulent gas–vapor–drop flow

and the heat transfer in it with allowance for the evap-

oration of liquid drops, interaction between the phases,

precipitation of liquid particles onto the duct wall, their

heat transfer with the wall, and vapor diffusion into the

vapor–gas mixture.

We assume that the annular liquid film on the wall

surface has dried already, so that the wall temperature

TW is always higher than the Leidenfrost temperature of
the drops [1]. Due to its low intensity, the radiative heat

transfer is ignored [7–12]. Next, we assume that all drops

undergo instantaneous evaporation as they arrive at the

wall, and the duct surface always remains dry; accord-

ingly, there is no liquid film on it. The conductive heat

transfer due to immediate drop/wall contacts is taken

i � 1 previous calculation cross-section along the

axial direction

L drop

m mean-mass parameter

P non-evaporating particle

T turbulent parameter

V vapor

W parameter under condition at the wall

� parameter under saturation condition

þ denotes the dimensionless variables in dy-

namic universal units
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into account with the help of the Mastanaiah–Ganic

model [9]. In the present study, a three-stage mechanism

of heat transfer in the two-phase flow is considered:

(1) the heat supplied to the wall is being transferred to

the drops deposited onto the wall surface and is

subsequently spent on their evaporation;

(2) the heat supplied to the wall is being transferred to

the gas–vapor–drop mixture;

(3a) some fraction of the heat from the vapor–gas mix-

ture is being transferred to liquid drop to be subse-

quently spent on their heating and evaporation;

(3b) the remaining part of the heat is spent on heating

the gas phase.

The volume fraction of the liquid phase is small

(ZL < 10�4), and the drops are rather fine (diameter
d1 < 100 lm). In each cross section of the duct, all
particles are of the same size. Such conditions can be

realized due to an intense turbulent mixing between the

flow and particles along the duct radius. The drops are

uniformly distributed along the duct volume, the latter

condition being fulfilled in the whole flow region. In the

zone where a complete evaporation of drops occurs,

their numeric concentration is modeled with zero-

diameter particles. In the flow, the particles suffer no

coalescence or fractionation. The Weber number built

on the difference between the velocities of the phases

and on the drop diameter, We ¼ qjU � ULj2d1=r � 1,

is much smaller than the critical Weber number WeC � 7
for the data reported in [9]. The drops are treated as

rigid spheres. According to the data reported in [1], at

volume concentrations of the dispersed phase in the two-

phase flow ZL < 0:1%, the back action of the drops on
the structure of the turbulent flow and the inter-drop

collisions may be ignored. The drop temperature is

uniform along the drop radius [11].

The momentum-, energy-, and mass transfer pro-

cesses in the gas–drop flow are modeled within the

framework of the particle-source-in cell (PSI-Cell) model

[20]. The model rests on a hypothesis that liquid drops

act as internal sources of vapor mass, momentum, and

energy in the gas phase. The mixture gives off heat to the

drops; the gas released during this process gets heated to

the temperature of the main vapor–air flow and diffuses

into the regions with lower vapor content. The heat

transfer from the vapor–gas phase to the drops is due

to thermal conductivity and convection. The PSI-Cell

model allows one to take into account complex processes

proceeding with participation of the two phases, these

processes being typical for all multi-phase flows.

In the inlet cross section of the duct, the distributions

of the temperatures and velocities of the phases are

uniform. All drops at the inlet to the duct are of the

same size and have identical temperatures. The tempe-

ratures of the phases at the duct inlet could be assumed

either identical (equilibrium), or different (non-equilib-

rium regime).

3. Mathematical model

3.1. System of governing equations and model of turbu-

lence

Under the adopted assumptions, the dynamics and

heat and mass transfer of the two-phase flow obey a

system of differential axial symmetric flow equations.

The continuity equation and the equations for the lon-

gitudinal velocity U , temperature T of the vapor–gas

mixture, and mass concentration KV of the vapor in the
binary vapor–gas mixture, written in the boundary layer

approximation, have the following form:

oU
ox

þ 1
r
o rVð Þ
or

¼ JnF
q

q U
oU
ox

�
þ V

oU
or

�
¼ � oP

ox
þ q

r
o

or
r lð

�
þ lTÞ

oU
or

�

� CDnq Uð � ULÞ Uj � ULjA

qCp U
oT
ox

�
þ V

oT
or

�
¼ 1

r
o

or
r

l
Pr

��
þ lT

PrT

�
oT
or

�

� anF Tð � TLÞ þ qDT

oKV
or

CpV

� CpA
oT
or

q U
oKV
ox

�
þ V

oKV
or

�
¼ q

r
o

or
r

l
Sc

��
þ lT

ScT

�
oKV
or

�
þ JnF

q ¼ ð1� ZLÞP
RT

: ð1Þ

The continuity equation and the energy and diffusion

equations contain source and sink terms that model the

influence of liquid drops on the transfer processes, and

the equation of motion includes an additional term that

takes the dynamic interaction between the phases into

account.

In the present study, to determine the turbulent vis-

cosity of the gas phase, the LRN E–e model of turbu-
lence by Nagano and Tagawa (NT) was used [15]. This

modification of the widely used E–e model was chosen
considering the fact that, for ducted flows, this model

provides a better agreement with experimental data on

turbulent characteristics of the phase-carrier and with

heat transfer data. The transfer equations for the kinetic

energy of turbulence E and its dissipation rate e, modi-
fied to the case of flows with liquid drops [16,17], have

the following form:

q U
oE
ox

�
þ V

oE
or

�
¼ q

r
o

or
r l

��
þ lT

rk

�
oE
or

�
þGk � qe� Sk
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q U
oe
ox

�
þ V

oe
or

�
¼ q

r
o

or
r l

��
þ lT

re

�
oe
or

�

þ Ce1ef1Gk

E
� Ce2e2qf2

E
� Se; ð2Þ

where Sk is the term that takes into account the addi-

tional dissipation of turbulence energy due to relatively

small particles (the dynamic slip in the mean motion is

negligible):

SE ¼ 2MLE
s

expð�XL=sÞ;

and Se is the term that takes into account the influence of

relatively small particles on the rate of dissipation of

turbulence energy (the dynamic slip in the mean motion

is negligible):

Se ¼
2MLe

s
expð�Xe=sÞ:

The dynamic viscosity of the gas phase may be cal-

culated in the framework of the standard two-equation

model:

lT ¼ ClflqE2=e:

The constants and damping functions coincides with

the corresponding values adopted in the model of tur-

bulence [15]

Cl¼0:09; rk ¼1:4; re¼1:3; Ce1¼1:45; Ce2¼1:9;

f1¼1; f2¼½1�expð�yþ=6Þ�2 1
�

�0:3exp
�
� Re3=4T =6:5
� 	2
�

;

Gk ¼lT
oU
or

� �2
; fl¼½1�expð�yþ=26Þ�2ð1þ4:1=Re3=4T Þ:

The dependence for determining the derivative oP=ox
in the equation of flow over the initial length of the duct

may be represented in the form

� oP
ox

¼ qU0

oU0

ox
:

The change in the flow velocity in the undisturbed

core of the flow may be found from the condition of

constancy of the mass flux in the duct:

qU0pðR � dÞ2 þ 2qp
Z R

R�d
Urdr ¼ G1 þ GE; ð3Þ

where G1 and GE are respectively the mass flux of the

mixture in a duct cross section and the mass flux due to

vapor formation. The formulas for G1 and G2 in (3) are

G1 ¼ qUmpR2ðMA þ MVÞ;
GE ¼ qVUmpR2ðMVi � MVi�1Þ:

The final expression for the flow velocity at the duct

axis U0 is

U0 ¼ G1

�
þ GE � 2qp

Z R

R�d
Urdr

��
qpðR
h

� dÞ2
i
: ð4Þ

Relations (1) should be supplemented with the energy-

balance equation for a drop

CpLULm
oTL
ox

¼ aF ðT � TLÞ � JF ½L þ CpVðT � TLÞ� ð5Þ

and with the equation of vapor-mass conservation at the

evaporating surface of a drop [21]

J ¼ JK�
V � qVD

K�
V

or
: ð6Þ

Here m is the drop mass.

Taking into account that the diffusional Stanton

number StD is

StD ¼ �qVD
oK�

V

or
=qUðK�

V � KVÞ;

we may write equation of mass conservation (6) in the

form

J ¼ StDqUb1D; ð7Þ

where

b1D ¼ ðK�
V � KVÞ=ð1� K�

VÞ ð8Þ

is the diffusional injection parameter. The concentration

of vapor at the evaporating surface of a drop K�
V is re-

lated with the drop temperature TL by the saturation
curve.

The equations of heat and mass transfer from the

surface of a non-evaporating drop have the form [16]

NuP ¼ aPd=k ¼ 2þ 0:6Re1=2L Pr1=3 and

ShP ¼ bd=D ¼ 2þ 0:6Re1=2L Sc1=3:

Here ReP ¼ qdP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � UPÞ2 þ ðV � VPÞ2

q
=l––Rey-

nolds number of non-evaporating particle built on the

slip velocity of the phases.

The diffusional Stanton number may be determined

from the expression [21]

StD ¼ ShP=ðReLScÞ;

and then Eq. (6) re-arranges to

J ¼ ð2þ 0:6Re1=2L Sc1=3ÞqUb1D=ðReLScÞ: ð9Þ

According to [22], the heat transfer coefficient of

evaporating drops a is related to the analogous coeffi-
cient of non-evaporating drops aP by the formula

a ¼ aP=½1þ CpðT � TLÞ=L�: ð10Þ

The material balance equation for the binary vapor–

air mixture is

KA þ KV ¼ 1:
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For the triple vapor–gas–liquid mixture, this equa-

tion may be written as

MA þ MV þ ML ¼ 1: ð11Þ

The relation between the mass concentrations of the

mixture components, K and M , is given by the formulas

KV ¼ MV=ðMA þ MVÞ and

KA ¼ MA=ðMA þ MVÞ ¼ 1� KV:

The expression for the current drop diameter in the

ith calculation cross-section is [12]

d3i ¼ d3i�1 � Jd2i�1
6Dx

qLUmi
: ð12Þ

In accord with (12), the choice of Umi as a charac-

teristic flow velocity was motivated by the fact that the

adopted model implies an intense mixing of particles

over the duct radius, which provides for radial unifor-

mity of drop sizes across the duct.

In flows with intense evaporation, the gas phase ve-

locity increases in the downstream direction due to

vapor generation. This phenomenon is allowed for by

the source term in the continuity equation, the increase

in the local velocities over the duct cross section being

dependent on the distribution of the gas phase temper-

ature. The mean-flow velocity of the vapor–gas mixture

in a current duct cross-section with allowance for the

vapor-mass income from evaporating drops was calcu-

lated from the formula

Umi ¼
Umi�1

1� nqLðd3i � d3i�1Þ=q
:

In the present study, the Prandtl and Schmidt num-

bers were assumed to be uniform both over the duct

length and over duct radius, and equal to PrT ¼
ScT ¼ 0:9.

3.2. A model for drop precipitation onto the duct wall from

a two-phase flow, and heat transfer between a precipitated

drop and the wall

To predict the rate of deposition of liquid drops onto

the wall from the turbulent flow, the following theoret-

ical dependence previously proposed was used [23]:

kLþ ¼ 0:115=ðB0:75s3=8þ Þ þ 2:5� 10�4s2:5þ
1þ 10�3s2:5þ þ 1:25� 10�3s3þ=

ffiffiffiffiffiffi
Rþ

p : ð13Þ

Here B ¼ 12:73
ffiffiffiffiffiffiffiffiffiffiffi
q=qL

p
pm3=ð1:381� 10�23TU�Þ is a

factor that takes into account the influence of Brownian

diffusion on drop precipitation [23].

To determine the mass concentration of particles

deposited onto the duct wall MLW from the turbulent

gas–vapor–drop flow, we use the following algebraic

relations.

The mass of the liquid deposited onto the duct wall is

mW ¼ JWDx2pDrDt;

where JW ¼ kLqL is the mass rate of precipitation of the
drops, Dx and Dr are the steps along the longitudinal
and transverse coordinates, and Dt is time.
The total number of deposited drops is

NW ¼ mW

qLpd3=6
:

The numeric concentration of the dispersed phase in

the flow of particles to be deposited onto the duct wall is

nW ¼ NW
pR2Dx

;

n ¼ ni�1 � nW is the current numeric concentration of

the particles which have remained in the flow, and i � 1
is the index that corresponds to the previous nodal

point.

The mass concentration of drops precipitated on the

wall surface is

MLW ¼ nWqLpd3

6q
: ð14aÞ

During the precipitation of the particles onto the

wall, some portion of the heat flux supplied to the wall is

spent on their evaporation. As in many previous models,

for instance in the model used in [9], here we assume that

the superposition principle may be applied to the heat

flows under consideration. The heat-flux density qW of
the heat flow supplied to the duct wall includes the

components corresponding to the heat flows from the

wall to drops qWL and from the wall to the vapor–gas–

drop mixture qWF.
The heat flux density from the duct wall to drops for

TW > TL has the form [9]

qW ¼ exp½1� ðTW=TLÞ2�JWLMLm: ð14bÞ

The mean-mass concentration of liquid drops ob-

tained by averaging their local concentrations over the

duct cross section is given by the expression

MLm ¼ 2

UmR2

Z R

0

MLUrdr:

3.3. Equation of particle motion

All computations in the present study were per-

formed for a vertically oriented duct. In this case, the

following forces acting on the particles were considered:

resistance force, gravitational force, and Archimedean

force. The Saffman and Magnus forces were ignored

in the present study. The aerodynamic forces due to

pressure gradient, attached mass, and Basse effect are

assumed to be negligible since these forces are propor-
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tional to the gas/liquid density ratio, which, in most

practical cases, are of the order of �10�3.
The equation of drop motion with allowance for the

skin-friction, gravitational, and buoyancy forces may be

written, in their vector form, as

m
d~UUL

dt
¼ CDqð~UU � ~UULÞj~UU � ~UULjA þ m~ggð1� q=qLÞ;

ð15aÞ

where CD is the coefficient of aerodynamic resistance
and g is the free-fall acceleration.
Projections of this equation onto the x- and r-axes

have the following form. For the longitudinal, x-direc-
tion, we have:

m
dUL

dt
¼ CDqðU � ULÞj~UU � ~UULjA � mgð1� q=qLÞ:

For the radial, r-direction:

m
dVL
dt

¼ CDqðV � VLÞj~VV � ~VVLjA:

The aerodynamic coefficient of resistance for evapo-

rating drops CD is given by the expression [16]

CD ¼ CDP
1þ CpðT � TLÞ=L

:

Here CDP is the coefficient of resistance of non-evapo-
rating drops, given by the formulas

CDP ¼
24=ReL gpb ReL6 1;
24

ReL
ð1þ Re2=3L =6Þ gpb ReL > 1:

8<
:

To compare theoretical predictions with experimen-

tally measured gas phase and drop velocity pulsations,

we had to compute these quantities in our numerical

simulations. Here, the particles were assumed to be

sufficiently large and their dynamic relaxation time s
longer than the Eulerian integral time scale XE of the

turbulence. The integral time scale XE which was nec-

essary for determining the transverse component of gas

phase pulsations, is given by the formula [23]

XE
þ ¼ XEU 2

� =m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20þ þ l2þ

q
;

which for yþ ! 0 reduces to the relation XE
þ ¼ l0þ � 10

(within the viscous sublayer, the integral time scale of

turbulence is assumed to be a constant value) and in the

turbulent flow core to the relation XE
þ ¼ lþ ¼ lU�=m

where lþ is the relative mixing length and l is the mixing
length given by the Prandtl–Nukuradze formula [24]

l ¼ R½0:14� 0:08ðr=RÞ2 þ 0:06ðr=RÞ4�:

The radial component of the root-mean-squared

pulsations of the gas phase flow is given by the formula

[24]

hm2i ¼ mT=X
EScT: ð15bÞ

The amplitude of the root-mean-squared pulsa-

tions of the phase-carrier in the longitudinal direction is

[24]

hu2i � 1:3E: ð16Þ

For sufficiently large particles, the turbulence inten-

sity of the dispersed phase may be related to the am-

plitude of root-mean-square pulsations of the gas phase

and to the time of dynamic relaxation of the particles by

the following formulas, previously used in [25]:

hm2Li ¼ hm2iXE

s
; XE ¼ CEffiffiffiffiffiffiffiffi

hm2i
p ; CE ¼ 0:14R; ð17Þ

where CE is the geometric turbulence scale of the phase-
carrier.

The relation between the time turbulence scales is [25]

XL � 0:61XE:

3.4. Boundary and inlet conditions

At the duct axis and at the outer border of the

boundary layer, the following symmetry conditions were

posed

oT
or

¼ oKV
or

¼ oU
or

¼ oE
or

¼ oe
or

¼ V ¼ 0

at r ¼ 0 and r ¼ d: ð18Þ

At the wall (at r ¼ R), no-slip conditions for the gas
phase velocity are fulfilled:

U ¼ V ¼ 0;
as well as the condition of wall impermeability for the

flow of substance

oKV
or

� �
W

¼ 0

and the Fourier heat transfer law

�k
oT
or

¼ qWF:

In the adopted model of turbulence, the following

conditions were set:

E ¼ 0; eW ¼ m
o2E
or2

� �
W

:

In the inlet cross section of the duct,

U ¼ U1; V ¼ V1; T ¼ T1; ML ¼ ML1;

TL ¼ TL1; d ¼ d1; KV ¼ KV1;

E ¼ E1; and e ¼ e1: ð19Þ

V.I. Terekhov, M.A. Pakhomov / International Journal of Heat and Mass Transfer 46 (2003) 1503–1517 1509



In the present study, the degree of gas phase turbu-

lence at the duct inlet was assumed to equal Tu ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ðhu2i þ hm2i þ hw2iÞ

p
=U ¼ 3%.

Relations (1)–(17) with appropriate boundary and

initial conditions (18) and (19) represent a closed system

of equations for heat and mass transfer processes in a

turbulent two-phase flow which allow one to calculate

all quantities of interest (distributions of temperature,

concentrations of phases, and components of the vapor–

gas mixture) and predict the evolution of particle sizes.

3.5. Numerical realization

The numerical solution of the partial differential

conditions was obtained with the help of the Crank–

Nicholson finite-difference scheme [26] by transforming

the initial differential equations in a system of discrete

algebraic linear equations. The obtained three-diagonal

system was solved by the sweep method using the

Thomas algorithm described in more details elsewhere

[26]. To spatially resolve the fine structure of the near-

wall turbulent flow, we used a computation grid with a

variable mesh size. The mesh size was decreasing to-

wards the duct wall and constant in the longitudinal

direction.

Since the mesh size in the transverse direction was

variable, for the sake of convenience the coordinate r
was transformed so that the equations could be solved

on a spatially uniform computation grid in the whole

computation domain. For the boundary layer problem

of interest, the most appropriate transformation of co-

ordinates was proposed in [26].

All computations were performed on a grid with 201

nodal points in the longitudinal direction and 101 such

points in the transverse direction. Besides, some me-

thodical computations were performed on a finer com-

putation grid (201 and 201 nodal points along the duct

length and radius, respectively). Further increase in the

total number of nodal points was found to cause no

substantial changes in the calculation results.

Since system (1)–(17) included non-linear equations,

to solve it, an iteration algorithm was used. The follow-

ing convergence conditions were adopted: jYi � Yi�1j <
10�4, where Y stands for U , E, e, T , KV or TL. The
computations were terminated on meeting all these

criteria.

4. Testing of the model

4.1. Single-phase flow mode

In the framework of the present study, the calcula-

tions according to the adopted E–e model of turbulence
were tested by comparing their results with the DNS

data and with the PIV and LDA data previously re-

ported for a ducted isothermal single-phase air flow in

[27]. In addition, the data gained in the present study

were found to perfectly comply with heat transfer reg-

ularities revealed for a turbulent single-phase gas flow in

[21].

4.2. Two-phase flow mode. Hydrodynamics of the flow

For a comparative analysis of data gained for a two-

phase flow, experimental data obtained by Varaksin and

Polyakov [28] for a descending flow of a gas/glass par-

ticles mixture and experimental data obtained by Cra-

mer and Depew [29] for an ascending gas/glass particles

flow were used. The predicted and measured distribu-

tions of the particle Reynolds number ReP ¼ dDU=m
along the duct radius are shown in Fig. 1.

Fig. 1. Radial distributions of measured and calculated Rey-

nolds numbers of glass particles in the duct with a stabilized

flow. Solid curves [15]; dotted curves [14]. (a) Experimental data

of [28] for a descending flow; (b) experimental data of [29] for

an ascending flow.
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The initial data for the numerical experiment for the

conditions of [28] were the following: 2R ¼ 46 mm,
Re ¼ 12300, U0 ¼ 4 m/s, MP ¼ 2%, dP ¼ 50 lm, qp ¼
2550 kg/m3, and sþ ¼ 79. The initial data for the con-
ditions of [29] were 2R ¼ 12:7 mm, Re ¼ 24500, U0 ¼
28:7 m/s, MP ¼ 26%, dP ¼ 62 lm, qp ¼ 2640 kg/m3, and
sþ ¼ 5417.
In the calculations, the algebraic Deissler model of

turbulence [14] and the E–e model of turbulence [15]
were used.

Inspection of data in Fig. 1a for a two-phase flow of

a mixture with a low concentration of the dispersed

phase shows a good agreement between the data pre-

dicted by both models of turbulence and measured

values over the whole duct volume. Both the calculation

and experimental data shows that the slip velocity of

the phases increases in the near-wall zone of the de-

scending flow.

Just the opposite pattern of slip velocity (see Fig. 1b)

is displayed by the ascending flow of the suspension of

glass particles. The maximum and minimum values of

the slip velocity were observed at the duct axis and near

the duct wall, respectively.

It is hardly possible to conclude definitely from the

data shown in Fig. 1b which of the two models of tur-

bulence more adequately predicts the behavior of par-

ticle Reynolds number ReL in the flow with a high

concentration of the liquid phase. It should be noted

that the concentration of the dispersed phase for the

data shown in Fig. 1b is an order of magnitude higher

than that in Fig. 1a. This could be the reason for the

observed difference between the predicted and measured

values. In a flow with a high mass concentration, effects

due to inter-particle and particle-wall collisions, and also

due to possible rotation of the dispersed phase, may

exert a substantial influence on the flow pattern [16].

Nevertheless, the satisfactory agreement between the

data predicted by the two models and experimental re-

sults for the paraxial flow region is worth noting. For

the near-wall region, the NT model predicts an increase

in ReL, whereas the Deissler model yields no such in-
crease.

It should be noted that both the NT and Deissler

models, as applied to ascending or descending flows

yield results being in qualitative agreement with the LES

data [30] gained for a vertical isothermal dispersion flow

in a duct.

The distributions of relative axial and radial pulsat-

ing velocities of the gas and dispersed phases along the

duct radius are compared in Fig. 2 with the experimental

data of [31]. The tests were performed for a descending

flow of an air/glass particles flow with the help of LDA.

The initial data for the numerical experiment for the

conditions of [35] were the following: 2R ¼ 46 mm,
U0 ¼ 5:2 m/s, dP ¼ 50 lm, qp ¼ 2550 kg/m3, MP ¼ 5%,
sþ ¼ 125, and Re ¼ 15300.

The following conclusions can be drawn from the

comparative analysis. The predicted values of the pul-

sating velocity of the gas phase in the transverse and

longitudinal directions rather adequately describe the

experimental data. The pulsational velocity of the par-

ticles calculated according to the Derevich model for

inertial particles [25] fairly well agrees with the experi-

mental data. Note that the calculation data show a

better agreement with the measured amplitude of

transverse pulsations compared to the longitudinal pul-

sations of the phase-carrier velocity. It is seen from the

distributions shown in Fig. 2 that the intensity of lon-

gitudinal pulsations of the particle velocity is lower than

that for the phase-carrier. This fact can be explained as

follows. The Stokes number in the large-scale pulsa-

tional motion is defined as Stk ¼ s=XL, being for the

conditions under consideration of the order of unity

(Stk � 1), from which it follows that particles readily get
involved into the large-scale pulsational motion and

take off energy from the turbulent phase-carrier vortices.

A decrease in the intensity of the transverse pulsations of

the gas phase leads to a decrease of the velocity pulsa-

tions of the particles [31].

Fig. 3 compares the numerical and experimental data

by Varaksin et al. [32] on the radial distributions of the

kinetic energy of gas phase turbulence for various con-

centrations of glass particles. The conditions of the se-

lected experiments correspond to the following values of

determining parameters: 2R ¼ 64 mm, U0 ¼ 6:4 m/s,
dP ¼ 50 lm, qp ¼ 2550 kg/m3, sþ ¼ 20, and Re ¼ 25600.
It is seen from Fig. 4 that relatively small particles pre-

sent in the flow suppress the turbulence. The lamina-

rizing action of these particles increases with increasing

mass concentration of particles; it also increases with

distance from the wall. These data are in a good quali-

tative agreement with the experimental data of [33].

Fig. 2. Comparison between the predicted and measured [31]

root-mean-square pulsations of air and glass-particle flows. (1)

hu2i1=2=U0; (2) hm2i1=2=U0; (3) hm2Li
1=2

=U0. Curves––calculation

data.
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4.3. Two-phase flow mode. Heat transfer

To estimate the prediction accuracy for the rate of

heat transfer in a vapor–drop flow, we compared the

results obtained in the present study with the experi-

mental data by Koizumi et al. [7]. The wall-temperature

profile over the duct length for a vapor–drop flow is

shown in Fig. 4. The initial data for the comparative

analysis were the following: duct diameter 10 mm, sat-

uration pressure P ¼ 3:08� 105 Pa, T1 ¼ TL1 ¼ T1 ¼ 300
K, d1 ¼ 30 lm, inlet Reynolds number Re1 ¼ U12R=
m ¼ 5:1� 105, the working liquid––Freon R-113. As is
seen from Fig. 5, the predicted and measured data agree

better with each other at high thermal loads than at low

values of qW. A possible reason for the difference be-

tween the predicted and measured data is inconsistency

between the adopted and actual mechanisms of heat

transfer between the gas–drop flow and the wall. In

particular, as the wall temperature decreases, the for-

mation of a liquid film on the wall surface becomes more

probable. As was mentioned previously, the present

model ignores this phenomenon. Simultaneously, the

E–e model provides a better agreement with the experi-
mental data compared to the algebraic Deissler model.

The validity of the developed computational model

was tested by comparing the predicted heat transfer data

with numerical simulations of heat transfer in turbulent

stabilized vapor–drop flows [8] (see Fig. 5). A satisfac-

tory agreement between the predictions of the Deissler

[14] and NT [15] models, on the one hand, and the data

of [8] on the other was obtained; it should be mentioned

however that the results yielded by the NT model

compare better with the calculations by Rane–Yao [8]

than the data gained with the algebraic model [14].

From the analysis of the data shown in Figs. 1–5, the

following conclusion can be drawn. The E–e model and
the algebraic relations for the root-mean-squared pul-

sations of the gas phase and particles rather accurately

predicts the pulsational processes, the dynamics of the

motion of the gas and dispersed phases, and heat transfer

regularities observed for developed two-phase flows.

All subsequent calculations were performed using the

E–e model.

5. Calculation results on heat transfer in a ducted gas–

vapor–drop flow and their comparison with available

experimental and numerical data

The calculations were performed for a flow of an air/

water vapor mixture with water drops (under atmo-

Fig. 5. Comparison of the calculation results according to

models [14] and [15] with the data of [8] on heat transfer in a

turbulent vapor–drop flow. Re1 ¼ 1:6� 105.

Fig. 4. Variation of the wall temperature along the duct length

in a single-component vapor–drop flow. Solid curves [15];

dotted curves [14]; points––experimental data of [7]. (1) ML1 ¼
0:35, qW ¼ 7:14 kW/m2; (2) ML1 ¼ 0:43, qW ¼ 2:13 kW/m2.

Fig. 3. Impact of particles on the distribution of the gas phase

turbulence energy over the duct cross section. Curves––calcu-

lation data, points––experimental data [32].
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spheric pressure). The duct length was 2 m, and the inner

duct diameter 0.02 m. The ranges of initial parameters

were the following: inlet temperature of the vapor–gas

mixture T1 ¼ 293–373 K; flow Reynolds number Re ¼
U12R=m ¼ 5� 103–106; drop diameter at the duct inlet
d1 ¼ 0:1–100 lm, which corresponds to a dimensional
relaxation time of the liquid drops sþ ¼ 10�3–103; mass
fraction of the drop phase ML1 ¼ 0–0:1; and mass frac-
tion of air MA1 ¼ 0–0:8. All calculations were performed
for a constant wall heat-flux density (qW ¼ const), namely,
for qW ¼ 1 kW/m2.

Fig. 6 illustrates the effect of mass concentration of

liquid drops in the flow on the skin friction. As is seen,

the skin friction almost linearly increases with increasing

concentration of particles. However, this increase is in-

significant, amounting to about 10% for large particles

available in the flow in the mass concentration ML1 ¼
0:1.
One more important feature in Fig. 6 deserves men-

tion. With increasing particle diameter, the skin friction

also increases. The profile of axial velocity and, hence,

skin friction are affected by a number of factors. The

evaporation of liquid drops leads to an increase in the

local flow velocity, and the dispersed phase suppresses

the gas phase turbulent pulsations. This is evident from

Fig. 7, where a larger particle size and a higher con-

centration of large particles cause more appreciable

laminarization of the flow. The decrease in the turbu-

lence kinetic energy is due to active involvement of rel-

atively small particles into the pulsational flow of the gas

phase and due to the fact that the vapor–gas mixture

gives over some part of its pulsational energy to these

particles. These conclusions are in qualitative agreement

with the experimental data obtained in [33], where it was

established that addition of large particles (dP ¼ 3 mm)
to the flow results in an increase of its turbulence level,

whereas addition of fine particles (dP ¼ 200 lm) or a
substantial decrease of their density (from qP ¼ 2600 kg/
m3 to qP ¼ 1000 kg/m3) lead to an increase in the kinetic

turbulence energy. At the same time, a third factor, ac-

celeration of more inertial particles by the flow, may

exert a more pronounced effect and, finally, cause an

increase in the skin friction with increasing drop dia-

meter. However, this point deserves a more detailed

numerical and experimental study.

Fig. 8 shows the heat transfer intensification ratio as

a function of the mass concentration of liquid drops in a

gas–vapor–drop flow. Here NuV is the Nusselt number
for a single-phase flow with fixed Reynolds number. As

Fig. 6. Skin friction versus the mass concentration of the liquid

phase. Re ¼ 13000; x=ð2RÞ ¼ 20; T1 ¼ 373 K; qW ¼ 1 kW/m2.
(1) d ¼ 1 lm, sþ ¼ 0:1; (2) d ¼ 10 lm,sþ ¼ 8; (3) d ¼ 30 lm,
sþ ¼ 70; (4) d ¼ 50 lm, sþ ¼ 190; (5) d ¼ 100 lm, sþ ¼ 760.

Fig. 7. Gas phase turbulence energy of the gas–vapor–drop

flow versus the initial drop diameter. Conditions are the same as

in Fig. 6.

Fig. 8. Variation of the heat transfer intensification ratio

Nu=NuV in the gas–vapor–drop flow. Labeling of the curves is
the same as in Fig. 6.
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is seen from Fig. 8, the liquid drops exert a substantial

influence of the heat transfer intensification ratio in the

two-phase gas–vapor–drop flow (the heat transfer rate

increases by a factor of 3), whereas the skin friction in-

creases only insignificantly (roughly by 10%). An in-

crease in the initial drop diameter results in an increased

skin friction, whereas, as it follows from Fig. 8, the heat

transfer rate decreases.

The impact of the drop diameter on the heat transfer

intensification ratio is analyzed in more detail in Fig. 9.

An increase in the drop diameter (at a fixed mass con-

centration of the liquid phase) diminishes the intensity of

heat and mass transfer processes, which effect can be

attributed to an appreciable reduction in the interface

area between the particles and the vapor–gas flow. For

relatively fine particles (d1 < 2–5 lm), the Nu=NuV ratio
does not depend on the drop diameter. This range of

particle sizes determines a steady-state evaporation re-

gime, with the vapor–gas mixture being in thermody-

namic equilibrium with the liquid phase.

Fig. 10 shows the heat transfer intensification ratio as

a function of air concentration in the vapor–gas mixture.

The Nu=NuV ratio is minimal for a single-component
vapor–drop flow without air (curve 1). With increasing

air concentration, the heat transfer rate increases since

the diffusion of vapor from the drop surface becomes

more intense; however, in this case the extension of the

two-phase flow region in the downstream direction

shrinks due to the more intense evaporation.

Such a complex multi-stage mechanism of heat

transfer from the wall to the two-phase flow being op-

erative, it is of special interest to determine the indi-

vidual contributions due to various heat transfer

components into the total heat flux at the wall. The

distributions of various heat flux components along the

duct length for two values of the mass concentration of

the liquid phase, ML1 ¼ 0:01 and 0.1, are shown in Fig.
11, where qF is the heat spent on heating the vapor–drop
flow, qWL is the heat-flux density due to the conductive
heat transfer upon immediate drop/wall contacts, qE is
the heat spent on drop evaporation in the flow, and qL is
the heat spent on drop heating. From Fig. 11, the fol-

lowing conclusions can be drawn. Over an initial length

of the duct, rather a high fraction of the heat supplied to

the duct wall is being spent on conductive heat transfer

and evaporation of liquid drops. Further downstream,

as the drops undergo evaporation, the components qL,
qWL, and qE all decrease, whereas the component qF due
to the heat flow to the vapor–gas phase permanently

increases until it finally reaches unity. In this case, a

Fig. 9. Heat transfer intensification ratio Nu=NuV versus the
initial drop diameter. x=ð2RÞ ¼ 20. (1) Re ¼ 1:8� 103; (2) 104;
(3) 5� 104; (4) 105.

Fig. 10. Heat transfer intensification ratio versus air concen-

tration. Re ¼ 13000; ML1 ¼ 0:1. (1) MA1 ¼ 0; (2) 0:01; (3) 0:1;
(4) 0:2; (5) 0:5.

Fig. 11. Distributions of the heat flux components in the two-

phase gas–vapor–drop flow. The conditions are the same as in

Fig. 6. (1) qF=qW; (2) qWL=qW; (3) qE=qW; (4) qL=qW.
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single-phase flow takes place. A change in the inlet

concentration of the liquid induces no fundamental

differences into the proportions between the various heat

transfer components except for the initial flow region,

where the concentration ML1 is low and a predominant

contribution is due to the heat transfer to the vapor–gas

mixture.

Subsequent figures compare the calculation results

obtained in the present study with some experimental

data previously reported in the literature.

The profile of the wall temperature TW along the duct
length, measured in [13], is shown in Fig. 12. The initial

data in the comparative analysis were the following:

ML1 ¼ 0:5%, Re ¼ U12R=m ¼ 39300, 2R ¼ 13:2 mm,

calculation length 0.924 m, GA ¼ 7:58 g/s, d1 ¼ 16 lm,
sþ ¼ 272, and T1 ¼ 293 K. The experiments were carried
out under atmospheric pressure. Fig. 12 demonstrates a

fairly good agreement between that the predicted and

measured wall-temperature profiles.

Fig. 13 shows the heat transfer intensification ratios

measured in [9] and heat transfer intensification ratios

calculated in the present study. Here, the quantity aA
refers to the case of a single-phase air flow with all other

conditions kept unchanged. The initial conditions in

the numerical experiments were the following: ML1 ¼
1:1–2:1%, Re ¼ U12R=m ¼ 21800–58600, 2R ¼ 12:95
mm, computation length 0.889 m, GA ¼ 4:02–10:8 g/s,
d1 ¼ 9–23 lm, sþ ¼ 139–208, and T1 ¼ 300 K. The ex-
periments were carried out under atmospheric pres-

sure. Both measured and predicted a=aA ratios display a
monotonic decrease in the downstream direction; they

decreases with decreasing wall heat flux density. An in-

crease in the wall heat flux density results in a decreased

heat transfer intensification ratio since, in this case, the

wall temperature increases.

6. Conclusions

A physical model of combined heat and mass transfer

in a turbulent gas–vapor–drop ducted flow has been

developed. In this model, the liquid phase represents a

system of localized sinks of heat and localized sources of

vapor mass and friction between the phases. To calcu-

late gas phase turbulent characteristics, the Nagano–

Tagawa LRN E–e model was used, modified to the case
of a flow with a contained dispersed phase. A closed

system of transfer equations is composed, which in-

cludes the continuity equation, equation of flow in the

longitudinal direction, energy equation with a source

term, diffusion equation for the vapor–gas mixture, and

the heat-and-mass transfer equation for a single drop. In

the model, the precipitation of drops onto the wall and

heat transfer due to immediate drop/wall contacts are

taken into account.

A numerical heat and mass transfer study of a tur-

bulent two-phase gas–vapor–drop ducted flow was per-

formed. The data were obtained for a wide range of flow

conditions and thermal parameters at the inlet to the

duct.

With increasing mass concentration of liquid drops, a

considerable intensification of heat- and mass transfer

processes in the two-phase flow is observed, with a

corresponding increase in the fraction of the heat spent

on the phase transition and on the heat transfer due to

immediate drop/wall.

It is shown that an increase in the initial drop dia-

meter decreases the rate of heat transfer between the

duct wall and the gas–vapor–drop mixture, whereas, in

this case, the wall friction increases only slightly.

An increase in the mass concentration of air at

the duct inlet considerably enhances the rate of heat

Fig. 12. Wall-temperature profiles. Curves––calculation data;

points––experimental data by Sicalo et al. [13]. (1) qW ¼ 17:84
kW/m2; (2) 13:92; (3) 11:5.

Fig. 13. Comparison of predicted heat transfer intensification

ratios with the experimental data of [9]. (1) qW ¼ 14:53 kW/m2;
(2) 8:34; (3) 6:4.
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transfer, but, in this case, the region occupied by the

two-phase flow becomes shorter. Both the gained data

on the flow dynamics and heat transfer data were

compared with available experimental results; a good

agreement with previous findings was obtained.
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